Real-time equipment condition assessment for a class-imbalanced dataset based on heterogeneous ensemble learning
نویسندگان
چکیده
منابع مشابه
Class-Boundary Alignment for Imbalanced Dataset Learning
In this paper, we propose the class-boundaryalignment algorithm to augment SVMs to deal with imbalanced training-data problems posed by many emerging applications (e.g., image retrieval, video surveillance, and gene profiling). Through a simple example, we first show that SVMs can be ineffective in determining the class boundary when the training instances of the target class are heavily outnum...
متن کاملA Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets
Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this resea...
متن کاملA Cost-Sensitive Ensemble Method for Class-Imbalanced Datasets
and Applied Analysis 3 costs for the positive and negative classes, SVM can be extended to the cost-sensitive setting by introducing an additional parameter that penalizes the errors asymmetrically. Consider that we have a binary classification problem, which is represented by a data set {(x 1 , y 1 ), (x 2 , y 2 ), . . . , (x l , y l )}, where x i ⊂ R represents a k-dimensional data point and ...
متن کاملOnline Ensemble Learning for Imbalanced Data Streams
While both cost-sensitive learning and online learning have been studied extensively, the effort in simultaneously dealing with these two issues is limited. Aiming at this challenge task, a novel learning framework is proposed in this paper. The key idea is based on the fusion of online ensemble algorithms and the state of the art batch mode cost-sensitive bagging/boosting algorithms. Within th...
متن کاملForce Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model
Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eksploatacja i Niezawodnosc - Maintenance and Reliability
سال: 2018
ISSN: 1507-2711
DOI: 10.17531/ein.2019.1.9